inn

the sunny ide

■ กI S. Sillnc
helping cold store and pack house
owners to look at their electricity
bills through solar-tinted glasses.
Energy audits at

10
1 Clemens Brandt.

THEY DON'T CALL IT 'SUNNY SOUTH AFRICA' for no reason. Most parts of the country enjoy an average of 2500 hours of sunshine per year, giving us one of the best solar resources in the world. Yet, the uptake of renewable energy, including solar, has been slow. lectricity in the world. This, coupled with a generapest ignorance about climate change and the need to conserve the environment, had us turning a blind eye to
the infinite source of energy at our disposal.
In 2008, however, widespread rolling power outages gave South Africans the wake-up call they needed. It became glaringly obvious that the national energy supply was under pressure and that the days of heap and abundant electricity were over The fresh fruit industry is not shielded from energy pressures. Electricity supplied by the national utility is carbon emission burden. The industry faces a possible carbon tax at home and pressure abroad as consumers in export markets demand fruit that is as free of CO_{2} emissions as possible.

Although agriculture will not be taxed directly, t is possible that Eskom may add a tax factor into its cost $/ \mathrm{kWh}$. This means that carbon will be an input cost.

CASE STUDY

Arbeidsureugd Fruit Packers (Pty) Ltd, Villiersdorp. System size: 450 KWp (kilowatt peak) lectricity generated: $\pm 743000 \mathrm{KWh}$ per year 0 avvided: ± 733 tons per year Total savings over 25 vears: $\pm B 38$ million Payback period: \pm six years

According to Governments latest carbon tax table, businesses can offset up to 10% of electricity-related carbon costs in their annual tax returns.
Understanding that the energy challenge needs to be addressed, the Post-Harvest Innovation Programme industry about the potential of solar energy to bring down energy costs. down energy costs
While the sun
infrastructure to harness it involves a significant investment. Knowing which solution to install requires specialised information - which usually comes at a considerable cost. Clemens Brandt from RED Engineering was therefore tasked to develop a tool that would empower producers to evaluate the viability stores and for household or other business uses:

A TOOL FOR ALL

Mr Brandt and his team's solution is a web-based too that can be used to conduct a free, on-line analysis of "We've also untangled all the intricacies involved in integrating Eskom electricity with a solar system - from household to industrial scale," says Mr Brandt. The process couldn't be simpler. Apart from electrical consumption data for a 12 -month cycle, the
model requires the user to punch in the location of the facility, the area available for solar panels, the angle of the roof and the direction it is facing, current electricity cost structures, maximum electricity demand, cost per unit and total cost.
In response, the model generates a report that provides the user with all the information necessary to make an informed decision about an investment in a solar photovoltaic (PV) system. It makes recommendations in terms of the size and technical

PROJECT TITLE The development of a solar power
viability model for th viability model for the
implementation of solar electricity generation at pack houses and cold stores PRINCIPAL INVESTIGATOR Clemens Brandt CONTACT DETALLS +27218204888
+27741369096 +27741369
clemens@ redengineering.co.za dUbATION One year PHI-2 CONTRIBUTION R240 000 LEAD INSTITUTION RED Engineering (Pty) Ltd BENEFICIARY The entire fresh fruit industry focus area Energy efficiency in the supply chain

www.postharvestinnovation.org.za

